skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Penaguiao, Raul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove that the number of tropical critical points of an affine matroid (M,e) is equal to the beta invariant of M. Motivated by the computation of maximum likelihood degrees, this number is defined to be the degree of the intersection of the Bergman fan of (M,e) and the inverted Bergman fan of N=(M/e)*, where e is an element of M that is neither a loop nor a coloop. Equivalently, for a generic weight vector w on E-e, this is the number of ways to find weights (0,x) on M and y on N with x+y=w such that on each circuit of M (resp. N), the minimum x-weight (resp. y-weight) occurs at least twice. This answers a question of Sturmfels. 
    more » « less
  2. We prove that the maximum likelihood degree of a matroid M equals its beta invariant β(M). For an element e of M that is neither a loop nor a coloop, this is defined to be the degree of the intersection of the Bergman fan of (M,e) and the inverted Bergman fan of N = (M/e)^⊥. Equivalently, for a generic vector w ∈ R^E−e, this is the number of ways to find weights (0, x) on M and y on N with x + y = w such that on each circuit of M (resp. N), the minimum x-weight (resp. y-weight) occurs at least twice. 
    more » « less